Noise is an undesirable and disturbing effect that degrades the quality of an image. The importance of noise reduction in images and its wide-ranging applications are essential. Most popular image noise filters rely on static parameters that are often challenging to fine-tune. Dynamically adapting these static parameters for image noise filters is a critical area of research. In this study, a combination model between the features of complex networks and artificial neural networks is proposed to automatically find the noise reduction parameter of the block-matching and 3D filtering method. Experimental results on the black and white MRI image set have shown that the model correctly predicted the parameters of the BM3D filter and removed the noise in the images of those MRI images. The model gave high denoising results with PSNR of 51.94 and SSIM of 0.998.
Loading....